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An estimate is obtained of the heat transfer from a constant-temperature hot 
wire in a two-dimensional low Reynolds number flow (R 1). The flow has 
a small sinusoidally fluctuating velocity superimposed on the mean velocity. 
For the fluctuating components it is shown that at low frequencies the heat 
transfer is in phase with the velocity, the magnitude of the heat transfer being 
given by the result for steady heat transfer, but at high frequencies the heat 
transfer lags behind the velocity, the relative magnitude of the heat transfer 
decreasing as (frequency)-1. 

1. Introduction 
Calibration of hot-wire anemometers by measuring the heat transfer from the 

hot wire for various fluid flow velocities is usually performed in uniform turbu- 
lence-free ffow even when the anemometer is to be used subsequently to sense 
velocity fluctuations in turbulent flow. Estimates of the relative magnitudes 
of terms in the equation describing conservation of energy in the fluid show that 
this form of calibration is acceptable provided that the frequencies of the velocity 
fluctuations being measured satisfy the restriction S < cR, where S = 2wa/Uo, 
cr and R are the Strouhal, Prandtl and Reynolds numbers, respectively, 2a is the 
diameter of the wire, w is the frequency of the fluctuation and U, is the mean 
velocity of the flow. The high frequency case, when the restriction is not satisfied, 
is discussed below. 

The form of the restriction suggests that time-dependent effects are only 
important at very low flow velocities. For very h e  wires this implies that the 
Reynolds number is typically, although not necessarily, less than one. When 
R > 1, however, and since c CI 1 for standard air, time-dependent terms can be 
important only if S > I, that is, only if the flow fluctuates over length scales 
comparable to or smaller than the wire diameter, a situation of little interest in 
hot-wire anemometry. Only the case R < 1 is discussed. 

Buoyancy effects, which may be important at low Reynolds number, are not 
included. Thus the analysis given below should be valid in the range G* < R < 1, 
where G is the Grashof number (Mahony 1956; Collis & Williams 1959). In  
addition, since the fluid is treated as a continuum, the Knudsen number, the 
ratio of the molecular mean free path to the wire diameter, must be negligibly 
small (Levey 1959). 
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2. Equations of motion 
Two-dimensional flow around an infinitely long wire of circular cross-section 

with its axis normal to the flow direction is considered. In  this simplified analysis 
only the equation of energy conservation in the fluid need be used. Cole & Roshko 
(1 954) and Levey (1 959) have shown how an Oseen type of argument can be used 
to simplify the energy equation for R < 1. The resulting approximate form is 

where the symbols each have their usual meaning. 
The prescribed constant velocity appropriate to the present analysis is 

V, = (U,+ Ule-iot, U,e-iot) with U,, U, < U,. The resulting temperature field is 
written as T = To + e-iot under the assumption Tl < To. In  hot-wire anemo- 
metry the heat transfer associated with Tl is used as a measure of U,, the fluctuat- 
ing velocity component in the mean flow direction. Linearized equations for the 
steady and fluctuating components of the temperature follow directly: 

V2To - .Uo aTOlax, = 0, (2) 

where a = pmcp/k ,  and (r,  8) are cylindrical co-ordinates with z1 = r cos 8. The 
boundary conditions are To = Tw and Tl = 0 at r = a, and To+Tm and Tl+O 
as r + m  

3. Heat transfer from the hot wire 
A soIution of (2) has been given by CoIe & Roshko (1954) and Levey (1959). 

Their expression for the Nusselt number for steady heat transfer from the wire is 

= Z[ln (Z/ha) - F1-1, (4) 

where h = &XU,, I? is Euler's constant and where higher-order terms in the smaIl 
parameter ha have been neglected. This result was obtained also by King (1914). 
It has been shown to be in excellent agreement with experimental results when 
R < 1 (Collis & Williams 1959). 

A solution of (3) can be obtained in a similar way by substituting 

Tl = ~ ( r ,  8) exp (hr cos 8)  

and solving the resulting equation for T by using, for example, a Green's function 
involving a series of modified Bessel functions. The term of lowest order in ha 
again can be extracted. The corresponding Nusselt number associated with the 
fluctuating component of heat transfer is 
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The total heat transfer from the wire is described by i V ~ , + N u , e - ~ ~ ~ .  To this 
order the transverse fluctuating velocity component U, does not contribute to 
the heat transfer. 

Equation (5 )  can be rewritten in the form 

. Ul 1 Nugln (1 +iZ) 
Nu, = -2- - U, Z 4-Nuo1n(l+iZ) 

3- ulNu' - as Z + O  
4 4  

(7) 

where Z = 4S/(uR) = 4wk/( Ugp,cp). The principal values of the logarithms are 
implied. Nu, is defined by (4). 

The low frequency result (7) can be obtained directly from the result (4) for 
steady heat transfer by substituting a Reynolds number R( 1 + Ul e-iwt/Uo) and 
retaining in the fluctuating component only terms of first order in U./U,. Thus 
at low frequencies, as expected, the fluctuating heat transfer is in phase with the 
fluctuating velocity and the steady-state heat-transfer calibration of the hot 
wire indeed can be used to determine the magnitude of the fluctuating velocity. 

At high frequencies, on the other hand, the heat transfer lags behind the 
fluctuating velocity by in and the relative amplitude decreases as (frequency)-1. 
In  this range, the time-derivative term in (3) is important. The fluctuations in 
velocity occur so rapidly that the temperature gradients generated close to the 
wire are relatively small and unimportant as a means of generating heat flow; 
thus there is only a small net transfer of heat away from the wire. Numerical 
estimates of (6) indicate that the minimum value of S a t  which time derivatives 
become important is S N AuR. 

I am pleased to be able to thank Dr 1.S.Gartsho1-e of The University of 
British Columbia for several interesting discussions of the problem. 
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